3.542 \(\int \cos (c+d x) (a+b \sec (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=334 \[ \frac {a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}+\frac {\sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}+\frac {a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {3 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d} \]

[Out]

a*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x
+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+(a+2*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b
)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-3*b*
cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*
x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+a*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 334, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3864, 4058, 3921, 3784, 3832, 4004} \[ \frac {a \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}+\frac {\sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}+\frac {a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {3 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*S
qrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (Sqrt[a + b]*(a + 2*b)*Co
t[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (3*b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, Ar
cSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1
 + Sec[c + d*x]))/(a - b))])/d + (a*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3864

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2), x_Symbol] :> Simp[(a*Co
t[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(2*d*n), Int[((d*Csc[e + f*x])^(n +
 1)*Simp[a*b*(2*n - 1) + 2*(b^2*n + a^2*(n + 1))*Csc[e + f*x] + a*b*(2*n + 3)*Csc[e + f*x]^2, x])/Sqrt[a + b*C
sc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegersQ[2*n]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \cos (c+d x) (a+b \sec (c+d x))^{3/2} \, dx &=\frac {a \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}-\frac {1}{2} \int \frac {-3 a b-2 b^2 \sec (c+d x)+a b \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {a \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}-\frac {1}{2} \int \frac {-3 a b+\left (-a b-2 b^2\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {1}{2} (a b) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {a \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} (3 a b) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{2} (b (a+2 b)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {\sqrt {a+b} (a+2 b) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {3 b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {a \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 12.00, size = 439, normalized size = 1.31 \[ \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \cos (c+d x) (a+b \sec (c+d x))^{3/2} \left (a \sqrt {\frac {b-a}{a+b}} \cos (c+d x) \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+4 i b (a-b) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )-2 i a (a-b) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )-12 i a b \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )\right )}{d \sqrt {\frac {b-a}{a+b}} (a \cos (c+d x)+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]^2*Cos[c + d*x]*(a + b*Sec[c + d*x])^(3/2)*((-2*I)*a*(a - b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d
*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(
c + d*x)/2]], (a + b)/(a - b)] + (4*I)*(a - b)*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x
])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)
] - (12*I)*a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*E
llipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)] + a*Sqrt[(-
a + b)/(a + b)]*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(Sqrt[(-a + b)/(a + b)
]*d*(b + a*Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [F]  time = 2.26, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \cos \left (d x + c\right ) \sec \left (d x + c\right ) + a \cos \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c)*sec(d*x + c) + a*cos(d*x + c))*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)*cos(d*x + c), x)

________________________________________________________________________________________

maple [B]  time = 1.26, size = 1026, normalized size = 3.07 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^(3/2),x)

[Out]

-1/d*(-1+cos(d*x+c))^2*(sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2+sin(d*x+c)*cos(d*x+c)*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*a*b+6*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b-4*sin(d*x+c)*cos(d*x+c)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*a*b+2*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2+(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2)
)*a^2*sin(d*x+c)+a*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((
-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)-4
*a*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+cos(d*x+c)^3*a^2-cos(
d*x+c)^2*a^2+cos(d*x+c)^2*a*b-a*b*cos(d*x+c))*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*
x+c))/sin(d*x+c)^5

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)*cos(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \cos {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((a + b*sec(c + d*x))**(3/2)*cos(c + d*x), x)

________________________________________________________________________________________